Nonparametric estimation of conditional value-at-risk and expected shortfall based on extreme value theory

نویسنده

  • Carlos Martins-Filho
چکیده

Abstract. We propose nonparametric estimators for conditional value-at-risk (VaR) and expected shortfall (ES) associated with conditional distributions of a series of returns on a financial asset. The return series and the conditioning covariates, which may include lagged returns and other exogenous variables, are assumed to be strong mixing and follow a fully nonparametric conditional location-scale model. First stage nonparametric estimators for location and scale are combined with a generalized Pareto approximation for distribution tails proposed by Pickands (1975) to give final estimators for conditional VaR and ES. We provide consistency and asymptotic normality of the proposed estimators under suitable normalization. We also present the results of a Monte Carlo study that sheds light on their finite sample performance. Empirical viability of the model and estimators is investigated through a backtesting exercise using returns on future contracts for five agricultural commodities.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

estimation of value - at - risk and expected shortfall based on nonlinear models of return dynamics and Extreme Value Theory

We propose an estimation procedure for value at risk (VaR) and expected shortfall (TailVaR) for conditional distributions of a time series of returns on a ̄nancial asset. Our approach combines a local polynomial estimator of conditional mean and volatility functions in a conditional heterocedastic autoregressive nonlinear (CHARN) model with Extreme Value Theory for estimating quantiles of the c...

متن کامل

Can we use kernel smoothing to estimate Value at Risk and Tail Value at Risk?

In this paper we analyse nonparametric methods to estimate risk measures in loss distributions. We study kernel estimation for Value-at-Risk and Tail Value-at-Risk based on transformation of the original data. The proposed method consists of a double transformation kernel estimation. We show that a suitable bandwidth selection criterion has a direct expression for the optimal smoothing paramete...

متن کامل

Nonparametric Estimation of Expected Shortfall

The paper evaluates the properties of nonparametric estimators of the expected shortfall, an increasingly popular risk measure in financial risk management. It is found that the existing kernel estimator based on a single bandwidth does not offer variance reduction, which is surprising considering that kernel smoothing reduces the variance of estimators for the value at risk and the distributio...

متن کامل

A comparison of some univariate models for Value-at-Risk and expected shortfall

We compare in a backtesting study the performance of univariate models for Value-at-Risk (VaR) and expected shortfall based on stable laws and on extreme value theory (EVT). Analyzing these different approaches, we are able to test if the sum–stability assumption or the max–stability assumption, that respectively imply α–stable laws and Generalized Extreme Value (GEV) distributions, is more sui...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2014